Question:
Fractal Dispute...help?
sillynoodle101
2006-05-17 20:10:22 UTC
My friend and I have a bit of a dispute. He says that two mirrors held to reflect each other is a fractal, (because the reflections repeat forever), and I say that it is not, (since it's not a geometric shape).
I'm looking for an answer AS WELL AS proof and/or the reasoning behind the answer. Thanks.
Three answers:
2006-05-17 20:12:07 UTC
Fractals are defined mathematical entities like a parabola which real objects might resemble, but no real object can be a fractal.
Gadget
2006-05-17 20:20:01 UTC
A geometric pattern that is repeated at ever smaller scales to produce irregular shapes and surfaces that cannot be represented by classical geometry. Fractals are used especially in computer modeling of irregular patterns and structures in nature.
shepardj2005
2006-05-17 20:17:11 UTC
The word "fractal" has two related meanings. In colloquial usage, it denotes a shape that is recursively constructed or self-similar, that is, a shape that appears similar at all scales of magnification and is therefore often referred to as "infinitely complex." In mathematics a fractal is a geometric object that satisfies a specific technical condition, namely having a Hausdorff dimension greater than its topological dimension. The term fractal was coined in 1975 by Benoît Mandelbrot, from the Latin fractus, meaning "broken" or "fractured."



Objects that are now called fractals were discovered and explored long before the word was coined. Ethnomathematics like Ron Eglash's African Fractals (ISBN 0-8135-2613-2) documents pervasive fractal geometry in indigeneous African craft. In 1525, the German Artist Albrecht Dürer published The Painter's Manual, in which one section is on "Tile Patterns formed by Pentagons." The Dürer's Pentagon largely resembled the Sierpinski carpet, but based on pentagons instead of squares.



The idea of "recursive self similarity" was originally developed by the philosopher Leibniz and he even worked out many of the details. In 1872, Karl Weierstrass found an example of a function with the non-intuitive property that it is everywhere continuous but nowhere differentiable — the graph of this function would now be called a fractal. In 1904, Helge von Koch, dissatisfied with Weierstrass's very abstract and analytic definition, gave a more geometric definition of a similar function, which is now called the Koch snowflake. The idea of self-similar curves was taken further by Paul Pierre Lévy who, in his 1938 paper Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole, described a new fractal curve, the Lévy C curve.



Georg Cantor gave examples of subsets of the real line with unusual properties — these Cantor sets are also now recognised as fractals. Iterated functions in the complex plane had been investigated in the late 19th and early 20th centuries by Henri Poincaré, Felix Klein, Pierre Fatou, and Gaston Julia. However, without the aid of modern computer graphics, they lacked the means to visualize the beauty of many of the objects that they had discovered.



In the 1960s, Benoît Mandelbrot started investigating self-similarity in papers such as How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. This built on earlier work by Lewis Fry Richardson. In 1975, Mandelbrot coined the word fractal to denote an object whose Hausdorff-Besicovitch dimension is greater than its topological dimension. (Please refer to the articles on these terms for precise definitions.) He illustrated this mathematical definition with striking computer-constructed visualizations. These images captured the popular imagination; many of them were based on recursion, leading to the popular meaning of the term "fractal"





Even 2000 times magnification of the Mandelbrot set uncovers fine detail resembling the full set.

Three common techniques for generating fractals are:



Iterated function systems — These have a fixed geometric replacement rule. Cantor set, Sierpinski carpet, Sierpinski gasket, Peano curve, Koch snowflake, Harter-Heighway dragon curve, T-Square, Menger sponge, are some examples of such fractals.

Escape-time fractals — Fractals defined by a recurrence relation at each point in a space (such as the complex plane). Examples of this type are the Mandelbrot set, the Burning Ship fractal and the Lyapunov fractal.

Random fractals — Generated by stochastic rather than deterministic processes, for example, fractal landscapes, Lévy flight and the Brownian tree. The latter yields so-called mass- or dendritic fractals, for example, Diffusion Limited Aggregation or Reaction Limited Aggregation clusters.





Fractals can also be classified according to their self-similarity. There are three types of self-similarity found in fractals:



Exact self-similarity — This is the strongest type of self-similarity; the fractal appears identical at different scales. Fractals defined by iterated function systems often display exact self-similarity.

Quasi-self-similarity — This is a loose form of self-similarity; the fractal appears approximately (but not exactly) identical at different scales. Quasi-self-similar fractals contain small copies of the entire fractal in distorted and degenerate forms. Fractals defined by recurrence relations are usually quasi-self-similar but not exactly self-similar.

Statistical self-similarity — This is the weakest type of self-similarity; the fractal has numerical or statistical measures which are preserved across scales. Most reasonable definitions of "fractal" trivially imply some form of statistical self-similarity. (Fractal dimension itself is a numerical measure which is preserved across scales.) Random fractals are examples of fractals which are statistically self-similar, but neither exactly nor quasi-self-similar.

It should be noted that not all self-similar objects are fractals — e.g., the real line (a straight Euclidean line) is exactly self-similar, but since its Hausdorff dimension and topological dimension are both equal to one, it is not a fractal.


This content was originally posted on Y! Answers, a Q&A website that shut down in 2021.
Loading...